Detecting and Correcting Failed Segmentations of Radiological Images Using a Knowledge-Based Approach

نویسندگان

  • Aldo von Wangenheim
  • Harley Wagner
  • Dirk Krechel
  • Peter Conrad
چکیده

The segmentation of images with poor contrast characteristics is an important issue in Medical Computer Vision. Often image segmentation results are either oversegmented, with “objects” divided into parts, or incorrectly segmented, with two or more anatomies segmented as one single object. This problem occurs in all types of segmentation approaches, but is of particular importance in the field of region-growing algorithms, which are used in many medical applications, preventing the definition of stable and reliable segmentation parameters. We present a new knowledge-based method, based on an extension of the inexact consistent labelling method, that enables the automated consistency checking of the results of region-growing segmentations and that is capable to automatically “fitting” erroneous segmentations, when they are oversegmented, given there exists a reliable domain model that can be used to guide a tree search procedure in the labelling space. This allows the use of oversensitive parameters always when an exact segmentation is not reliable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

Image Stitching of the Computed Radiology images Using a Pixel-Based Approach

In this paper, a method for automatic stitching of radiology images based on pixel features has been presented. In this method, according to the smooth texture of radiological images and in order to increase the number of the extracted features after quality enhancement of initial radiology images, 45 degree isotropic mask is applied to each radiology image to observe the image details. After t...

متن کامل

An approach to fault detection and correction in design of systems using of Turbo ‎codes‎

We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...

متن کامل

Classification of Chest Radiology Images in Order to Identify Patients with COVID-19 Using Deep Learning Techniques

Background and Aim: Due to the important role of radiological images for identifying patients with COVID-19, creating a model based on deep learning methods was the main objective of this study. Materials and Methods: 15,153 available chest images of normal, COVID-19, and pneumonia individuals which were in the Kaggle data repository was used as dataset of this research. Data preprocessing inc...

متن کامل

Application of the Dice Similarity Coefficient (DSC) for Failure Detection of a Fully-Automated Atlas Based Knee MRI Segmentation Method

Problem Quantitative analysis of MRI images is providing new insight into and sensitivity to detect osteoarthritic progression, but is encumbered with the time, cost and variability associated with manual or semi-automated segmentation. To address this, a fully-automated knee MRI segmentation and analysis method was developed and validated. Although the method has proven to be robust, in a smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000